A Scheme for Balanced Monitoring and Accurate Diagnosis of Bivariate Correlated Process Mean Shifts
نویسندگان
چکیده
Monitoring and diagnosis of mean shifts in manufacturing processes become more challenging when involving two or more correlated variables. Unfortunately, most of the existing multivariate statistical process control schemes are only effective in rapid detection but suffers high false alarm, that is, imbalanced monitoring performance. The problem becomes more complicated when dealing with small mean shift particularly for identifying the causable variables. In this research, a framework to address balanced monitoring and accurate diagnosis was investigated. Design considerations involved extensive simulation experiments to select input representation based on raw data and statistical features, recognizer design structure based on synergistic model, and monitoring-diagnosis approach based on two stages technique. The study focuses on correlated process mean shifts for cross correlation function, ρ = 0.1 ~ 0.9 and mean shift, μ = ± 0.75 ~ 3.00 standard deviations. The proposed design, that is, an Integrated Multivariate Exponentially Weighted Moving Average with Artificial Neural Network scheme gave superior performance, namely, average run length, ARL1 = 3.18 ~ 16.75 (for out-of-control process), ARL0 = 452.13 (for incontrol process) and recognition accuracy, RA = 89.5 ~ 98.5%. The proposed scheme was validated using an industrial case study from machining process of audio video device component. This research has provided a new perspective in realizing balanced monitoring and accurate diagnosis of correlated process mean shifts.
منابع مشابه
Online Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique
In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...
متن کاملSimultaneous Monitoring of Multivariate-Attribute Process Mean and Variability Using Artificial Neural Networks
In some statistical process control applications, the quality of the product is characterized by thecombination of both correlated variable and attributes quality characteristics. In this paper, we propose anovel control scheme based on the combination of two multi-layer perceptron neural networks forsimultaneous monitoring of mean vector as well as the covariance matrix in multivariate-attribu...
متن کاملAn artificial Neural Network approach to monitor and diagnose multi-attribute quality control processes
One of the existing problems of multi-attribute process monitoring is the occurrence of high number of false alarms (Type I error). Another problem is an increase in the probability of not detecting defects when the process is monitored by a set of independent uni-attribute control charts. In this paper, we address both of these problems and consider monitoring correlated multi-attributes proce...
متن کاملEconomic Statistical Design of Multivariate T^2 Control Chart with Variable Sample Sizes
Today, quality improvement and cost reduction are key factors for achieving business success, growth and position. One of the primary tools for quality improvement and cost reduction in online activities of statistical process control is control charts. As the need for monitoring several correlated quality characteristics is extensively growing, the use of multivariate control charts become...
متن کاملAn Evaluation of an Adaptive Generalized Likelihood Ratio Charts for Monitoring the Process Mean
When the objective is quick detection both small and large shifts in the process mean with normal distribution, the generalized likelihood ratio (GLR) control charts have better performance as compared to other control charts. Only the fixed parameters are used in Reynolds and Lou’s presented charts. According to the studies, using variable parameters, detect process shifts faster than fixed pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012